STRUCTURE LABORATORY

Elements of Civil Engineering-I (CE-160)

LIST OF EXPERIMENTS

ENOTE.WEEBLY.COM

- 1. To verify the Theoretical Bending Moment by Wooden Beam Apparatus at the section of Hinge using various load combinations.
- 2. To determine Modulus of Elasticity (E) for the material of given beam(s) using Deflection Method.
- 3. To determine Izod and Charpy Impact Values of Mild Steel and Cast Iron specimen.
- 4. To determine Rockwell and Brinell Hardness of Mild Steel, Cast Iron and Brass specimen.
- 5. To plot Stress-Strain curves for Mild Steel and Cast Iron specimen using Universal Testing Machine (UTM) and to determine Modulus of Elasticity, Proof Stress and Ultimate Stress of the materials.

OBJECT:

To verify the Theoretical Bending Moment by Wooden Beam Apparatus at the section of

Hinge using various load combinations.

APPARATUS USED:

FORMULA USED:

Experimental Bending Moment = Net Spring Force × Lever Arm

OBSERVATIONS:

Lever Arm = 34 cm

		221	Sprin	g Force	(kg)	Experimental	Theoretical	
S. No.	Beam Diagram		Initial	Final	Net	Bending Moment (kg-cm)	Bending Moment (kg-cm)	% Error
1.				* =	800			
2.				e e	នស់ ខ ១ ១			***
3.		٠		•	•	4		
4.							3	
5.	**************************************							
6.		100	*	P.S.	30 50			

OBJECT: To determine Modulus of Elasticity (E) for the material of given beam(s) using Deflection Method.

APPARATUS USED:

FORMULA USED:

Deflection of Simply Supported Beam under the load subjected to Point Load at mid span

$$\Delta = \frac{WL^3}{48EI}$$

where, W = Point Load (kg)

L = Length of Span (cm)

E = Modulus of Elasticity (kg/cm²)

I = Moment of Inertia of the beam section about the axis of rotation (cm⁴)

= $\frac{bd}{12}$ (b = width and d = depth of the beam in cm)

OBSERVATIONS:

FOR MOMENT OF INERTIA

Least Count of the Vernier Calipers, LC = cm

S. No.	Reading on Main Scale	Reading on Vernier Scale		Total Reading (cm)	
WIDTH	(cm) _*	Divisions	Value (cm)	Individual	Average
	(0)	I			
1.					
2.					
3.					
DIPTH	(d) =				
1.					
2.					
3.	× × × × × ×				

FOR LOAD-DEFLECTION PLOT

S. No.		LOADING		UNLOADING		AVERAGE	
S. NO.	Load (kg)	Deflection (cm)	Load (kg)	Deflection (cm)	Load (kg)	Deflection (cm)	
1.	0.0	0.0	0.0		0.0	(cin)	
2.				; i	•		
3.			24				
4.	•				2. • (A)		
5.	121			- 1			
6.		·	•				
7.				•			

Notes: 1. Plot Average Load (W) vs Average Deflection (Δ) on a graph paper.

- 2. Draw Best Fit Line passing through the origin.
- 3. Determine Slope of the Line.

4. Determine Modulus of Elasticity as
$$E = \frac{L^3}{48I} \times Slope$$

<u>OBJECT:</u> To determine Izod and Charpy Impact Values of Mild Steel and Cast Iron specimen.

APPARATUS USED:

OBSERVATIONS:

IZOD IMPACT TEST

Parameters Parameters	Mild Steel	Cast Iron
Length (cm)		72 10
Width (cm)		8.06 mm
Depth (cm)		8.06 mm
Depth of Notch (cm)		5.08 (110)
Depth of Specimen at the Notch = Depth-Depth of Notch (cm)		
Distance of Notch from end (cm)		
Initial Reading on Impact M/C		0
Final Reading on Impact M/C	163.6	137964
Impact Value = (Final – Initial) (kg-m)	163.6	137.64

CHARPY IMPACT TEST

Parameters	Mild Steel	Cast Iron
Length (cm)	. 55: 16 mm	53.06 mm
Width (cm)	10 mm	8.02 mm
Depth (cm)	10 mm	8.02 mm
Depth of Notch (cm)		8.01
Depth of Specimen at the Notch = Depth-Depth of Notch (cm)	· L	
Initial Reading on Impact M/C	ð	
Final Reading on Impact M/C	297	133.9
Impact Value = (Final – Initial) (kg-m)	297	133.9

OBJECT: To determine Rockwell and Brinell Hardness of Mild Steel, Cast Iron and Brass specimen.

APPARATUS USED:

FORMULA USED: Brinell Hardness Number (BHN) =
$$\frac{P}{\pi \frac{D}{2} (D - \sqrt{D^2 - d^2})}$$

OBSERVATIONS:

ROCKWELL HARDNESS TEST

Applied Load (kg) Size and Material of Inde		Rockwell Hardness Value
	MILD STEEL	
100	1/16" dia. Steel Ball	1. 2. 3. Average=
100	2.5mm dia. Steel Ball	1. 2. 3. Average=
	BRASS	1
100	1/16" dia. Steel Ball	1. 2. 3. Average=

BRINELL HARDNESS TEST

ENOTE.WEEBLY.COM

Applied Load (P) (kg)	Diameter of Indentor (D) (mm)	Diameter of Indentation (d) (mm)	(d) BHN	
. 250	MILD STE	CL		
187.5	CAST IRO 2.5	Ň		
	BRASS			
250	5.0	(A) 100 (a) (a		